TensorFlow中的embedding层用于将离散的输入数据(如单词、类别等)映射到连续的表示空间中,从而将高维稀疏的数据转换为低维稠密的表示,以便神经网络能够更好地处理和学习这些数据。通过embedding层,模型可以学习到输入数据之间的语义关系,从而提高模型的泛化能力和性能。embedding的作用包括降维、提取特征、学习数据之间的语义关系等。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: TensorFlow中怎么实现模型自适应调整