在Ubuntu系统中进行Python机器学习项目开发通常涉及以下步骤:
sudo apt update
sudo apt install python3 python3-pip
pip3 install numpy pandas scikit-learn matplotlib
ml_project.py
。python3 ml_project.py
wget https://repo.anaconda.com/archive/Anaconda3-2024.05-Linux-x86_64.sh
bash Anaconda3-2024.05-Linux-x86_64.sh
conda create -n myenv python=3.8
conda activate myenv
conda install jupyter numpy pandas matplotlib seaborn scikit-learn
jupyter notebook
pip3 install opencv-python
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 读取图像并将其转换为灰度图
images = []
labels = []
for filename in os.listdir('images'):
img = cv2.imread(os.path.join('images', filename))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
images.append(gray)
# 假设每个图像都有一个对应的标签
# 你需要根据实际情况获取标签
X_train, X_test, y_train, y_test = train_test_split(images, labels, test_size=0.2, random_state=42)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
以上步骤提供了在Ubuntu系统上使用Python进行机器学习项目开发的基本指南。根据具体的项目需求,可能还需要安装其他特定的库和工具。
辰迅云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
推荐阅读: Ubuntu上Oracle安全如何保障